welcome在线购彩

  • <tr id='NWMfCR'><strong id='NWMfCR'></strong><small id='NWMfCR'></small><button id='NWMfCR'></button><li id='NWMfCR'><noscript id='NWMfCR'><big id='NWMfCR'></big><dt id='NWMfCR'></dt></noscript></li></tr><ol id='NWMfCR'><option id='NWMfCR'><table id='NWMfCR'><blockquote id='NWMfCR'><tbody id='NWMfCR'></tbody></blockquote></table></option></ol><u id='NWMfCR'></u><kbd id='NWMfCR'><kbd id='NWMfCR'></kbd></kbd>

    <code id='NWMfCR'><strong id='NWMfCR'></strong></code>

    <fieldset id='NWMfCR'></fieldset>
          <span id='NWMfCR'></span>

              <ins id='NWMfCR'></ins>
              <acronym id='NWMfCR'><em id='NWMfCR'></em><td id='NWMfCR'><div id='NWMfCR'></div></td></acronym><address id='NWMfCR'><big id='NWMfCR'><big id='NWMfCR'></big><legend id='NWMfCR'></legend></big></address>

              <i id='NWMfCR'><div id='NWMfCR'><ins id='NWMfCR'></ins></div></i>
              <i id='NWMfCR'></i>
            1. <dl id='NWMfCR'></dl>
              1. <blockquote id='NWMfCR'><q id='NWMfCR'><noscript id='NWMfCR'></noscript><dt id='NWMfCR'></dt></q></blockquote><noframes id='NWMfCR'><i id='NWMfCR'></i>
                顶部logo

                资讯中心

                众巍为您提供行业第一资讯!
                CO 2电还原有利于碳同位素12 C ,并有◣利于同位素分离。
                发布日期:2024-04-02 来源:重水 同位素 氙气 ,氪气, 氖气,氦气, 三氯化硼,三氟化硼,氘气, 一氧化碳, 甲烷

                通过提供标记化学相同分子的独特机会,使用稳定、良性的同位素在理解◣代谢途径、药物发现和阐ζ明化学转化方面实现了突破。虽然稳定同位素有广泛≡的应用,但其部署受到有限的制造能力和稀有同位素的高分离卐成本的限制化学工业中使用的大多※数分离技术利用同位素物理性质的差异,例如沸点或渗出率。同位素具有↙非常相似的物理性质,并且由此产生的分离过程非常复杂。因此,同位素的工业分离需要数百个阶段才能达到」所需的同位素纯度,这导致处理时间延长、能耗和成本较高,并最终限制了用于医疗保健和研究的标记化合↓物的供应。因此,发现能够大幅降低富含同位素的化学品的价格及其更广泛的可用∮性的新方法将有利于①科学和技术。

                鉴于改善稳定同位素材料获取的重要性,我们试图了解是否可以采用在∮能源转型背景下快速发展的技术(例如CO?2电解)来分离同位素。如果成功,这些方法不仅可以促进同位素◢的获取,还可以提供提供高价值产品的机会,从而促进化学品和燃料碳中▓和生产的扩大和部卐署。我们重点关注碳 13 (?13?C),这是一→种稳定的碳同位素,自然丰度为 1.1%,广泛应用于卫生部门,最近也用于新冠肺炎治疗研究和诊断,有助于形成预计的化合物2020 年至 2027 年间年增长率为 2.2%。?13?C 富集化合物无放射性(与14?C 不同),因此是安〓全的并且可用于蛋白质定量研究、代谢过▲程分析(例如癌症◣新陈代谢?),以及医学诊断测试,例↓如用于检测是否存在幽门螺杆菌感染的尿素呼气测试。

                目前,13 C是通过一氧化碳或甲烷低温蒸馏以工业规模生产的。?由于原料13 C自然丰度较低,且12?C 和13 C分离困难,现有13?C 生产工厂部署☉了超过 100 米高的根塔,每吨的产量不足一吨。年(据报道最大的13?C 制造工厂每年可生产约 525 千克13?C?)。根据工业部署流程的报告,我们⌒估计需要 15 天才能将 CO 流从 1.1% 预浓缩至 10%?13?C 含量。

                因此,人们对寻找更具规模和成本效益的方法来分离这种重要的同位素非∩常感兴趣。报道了●基于热扩散化学交换、和反应分离方法;然而,这些提高的流程效率都不足以打★入市场。激光分离24 是一种新兴的铀和硅分离商业方法,也已被研究用于13?C 浓缩;然而,它们的部署需要使用卤代化合物,例如CHClF?2?/Br?2,并且加上有限的工艺效率,最终没Ψ有产生可行的大规模方法。25因此,仍然需要一种替代同位素浓缩方法,该方法将在经济和环境方面带来显着改善。

                为了寻找13?C 生产【的替代方法,我们首先分析了光合作用13 C 的富集效「应。在自然发生的碳循环中,12?CO?2同位素体优先通过几个子步骤(CO?2吸收、转化为光合作用▆前体)用于光合作用过程。因此,相对于13?C ,?12 C 优先在生ω物量中积累。?我们假设,由于 CO?2电解(CO2R)与光合作用有一些相』似之处,它也可能在 CO 转化过程中区分13?C 和12 C?2含有ω 一个或多个碳分子的产品。此外,据报道,电解本身对于锂同位素分离具有明显的富集作用。尽管这种影※响很小,但我们预计,通过仔细控制 CO?2电解中发生的所有」分子事件,我们也许能够进一步加强电化学相关的富集,并最∑ 终使用 CO?2电还原作为一种有效的方法产生13?C 同位素。